

# LabVIEW Based Training Simulator: North Sea Diving

Dr Andy Clegg, ISC Ltd





Soljaguar (https://commons.wikimedia.org/wiki/File:Buzo.jpg) Creative Commons BY-SA 3.0









Soham Banerjee (https://commons.wikimedia.org/wiki/File:Pressurised\_Chambers\_for\_Divers.jpg) Creative Commons BY 2.0





- Dive Supervisor role is really important
- Adjusts breathing gasses / pressures
- Needs to spot and respond to problems before they turn catastrophic
- Heavily reliant on experience

#### **The Problem**



- Dive Supervisors trained on the job shadowing experienced operator
- But difficult to :
  - **Gain exposure to serious / abnormal situations**
  - **Transfer to different vessel with different panels / operating procedures**
  - **G**ain sufficient panel hours to stay certified, especially with shorter dive campaigns
- Training Simulator can address these challenges needs realism to be effective:
  - **T** Few simulators currently exist hardware based with little flexibility and high cost

## **Software-Based Training Simulator**

- Involving PaleBlue (Norway), NYD (Norway), ISC (UK)
- Software based training simulator for diving operations:
  - Highly realistic UI and audio
  - Pre-recorded real video clips and potential link to VR Diver
  - Physics-based math models of breathing gases, vessel pressures / temps and divers
  - Flexible / Customisable / Cost effective / Portable
- Immersive training scenarios, with ability to create realistic and unlimited faults





#### **Trainee Environment**





## **Trainee Environment**





- Large, fully interactive touch screens
- Mimic of real supervisor workstation, control panels
- Customisable vessel panels
- Pre-recorded video content
- Multiple communications channels incl. scrambling

#### **Instructor / Scenario Definition**



|                | DURIN CONTROL INVAL                              |
|----------------|--------------------------------------------------|
|                | Panelo Panel1 Panel2 Panel3 Panel4 Panel5 Panel7 |
|                | Provider 1 Cm                                    |
|                | Booster 1 Fault                                  |
|                | Departure 2 Co                                   |
|                | Booster 2 Feat                                   |
|                | Booster 2 Running                                |
|                | OXYGEN RANEL                                     |
|                | Crygen Supply:                                   |
|                | Citygen Regulator:                               |
| 1 m            | CONTROL PANEL                                    |
|                | Supply Pressure:                                 |
|                | Hose Pressure:                                   |
|                | Control Row Indicator On                         |
|                | Control Roat Alarm                               |
|                | Control Roat Alarm Mute                          |
|                | Control BPR Rowmeter:                            |
|                | Control BPR Loader Regulator Pressure:           |
|                | MAZELP PANEL                                     |
|                | Makeup Enrich:                                   |
|                | Makeup Supply:                                   |
|                |                                                  |
|                |                                                  |
|                |                                                  |
| and the second |                                                  |
|                |                                                  |
|                |                                                  |
|                |                                                  |
|                |                                                  |

- Configuration
- Scenario activation
- Normal operational sequences
- Fault introduction introduced live, so can adapt scenarios from basic to very challenging
- Role playing as divers, bellman, sat control, DP operator ...

#### **Software Architecture**



- Main Application developed in C# running on PC (PaleBlue) handles trainee UI, audio and video, instructor UI and configuration
- But physics-based dynamic models built entirely in LabVIEW (ISC):
  - C# application drives operation not true real-time but sufficient for realism
  - □ Math models derived from first principles, then coded in LabVIEW
  - □ But cast into stateless form i.e. has no internal memory (states) and all data on C# side
  - □ Not so visible, but vital for realism of scenarios, faults and trainee actions

#### **Software Architecture**





#### **Process Modelling**



- System boundaries / assumptions are defined by functionality want to replicate
- Split into sub-models but still need high level functionality
- For each sub-model define inputs, outputs, maths to match physics and operations
  - Assumptions to simplify, but need to make sure appropriate
  - Constraints on usage math model may only be valid for restricted range of input
  - **D** Define both normal and abnormal features
  - □ Validation of model very important here

#### **Process Sub-Models**









• Example, flow of gas into a chamber to increase the pressure:



- Important to define all features needed, e.g.:
  - Gas removal (e.g. leakage, flow-out) easy to add: *net flow = flow in flow out*
  - Gas mixture: define each gas component separately to give overall pressure, but also get concentrations as ratio of moles (e.g. for CO₂ build-up)
  - Doors between chambers: can only be opened when pressure difference < 0.1bar

#### **Process Modelling**



• Can build model exactly in this format in LabVIEW CD&SIM:



- Important to be rigorous:
  - **Care with units (e.g. temperature in Kelvin)**
  - □ Integrator initialisation, limits important to keep model valid, reset (?)
  - □ Assumptions temperature fixed or variable ? pressure changes density ?



#### **Process Modelling**

#### • But final implementation in a stateless form:



- Integrator replaced by discrete equivalent (summation) and state (input/output):
  - □ Sample time now important to include correctly might vary with non-RT operating system
  - Initialisation handled by initial value of state
  - Limits on integration would need to be included

### **Model Testing and Validation**



- Sub-models initially developed using LabVIEW CD&SIM
- Converted to stateless form and tested in Test Bench built in LabVIEW, using same input/outputs/states as used by the main application
- Test Bench allows testing of the overall system model without having to use full simulator
  - Also provides test cases / debugging for integration into C# application
- Final model validation done by experienced dive supervisors using full simulator



#### **Outcomes**



- Has generated a lot of interest in industry operators, training, certification bodies
  - □ Now approved as a Class B simulator by IMCA
- Could also be used for incident investigation, equipment development, equipment testing and certification
- Training simulators have been widely used in many safety critical industries oil and gas, nuclear, aircraft – but often very expensive to give realism.
- LabVIEW's flexibility and interfacing is enabling new applications

#### Thank you. Any questions ?

Dr Andy Clegg Managing Director, ISC Ltd Tel: (+44) 0141 847 0515 Email: andy@isc-ltd.com Web: www.isc-ltd.com Glasgow, Scotland, UK

### **Background to ISC**



- Control engineering consultancy based in Glasgow
  - □ Founded 1987 as a spin-out from Strathclyde University
- Works across many sectors:
  - Oil/Gas; Power Generation; Automotive; Marine; Process
- Small 5 full time, 4 part time employees
- However we work with some very large companies:
  - BP; Shell; General Motors; Toyota; Boeing; BAE Systems; Rolls Royce Marine; SSE;
    Scottish Power; Alstom; EDF ... and GSK

#### **ISC Core Capabilities**



- Dynamic Systems Modelling:
  - □ high fidelity first principles models or data-driven identification
- Control Strategy Design both new and improvements
  - □ full software development NI LabVIEW / CompactRio
- Troubleshooting Control Problems
- Optimisation
- Technology Reviews
- Training standard and bespoke courses

ISC is typically involved in novel or challenging control studies.

Close working with clients to get best solution and ensure full transfer.

## ISC's use of Simulation in the V-Model



- ISC use both Matlab/Simulink and LabVIEW for dynamic simulation, and have experience with model conversion as well as other simulation packages.
- LabVIEW CD&SIM is can be used at all stages with minimal transition required when moving from pure simulation to HIL environments to final realisation.